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Assessing Value-at-Risk

Backtesting of VaR

Overview

Challenges in validating VaR

� How do we measure “poor performance” of VaR?→model risk

� VaR backtesting: type of model validation

� VaR not a point forecast, but statement about distribution of future
outcomes

� VaR exceedance, exception or excession: event the portfolio loss
exceeds the VaR

� Loss over the VaR horizon is compared with VaR computed just prior
� E.g. for daily VaR, compare VaR reported at close of trading with

loss over subsequent trading day

� For single position, exceedance can be defined in terms of return: for
each of T observations,

� Parametric: compare realized return with estimated volatility
� Historical simulation: compare realized log or arithmetic return with

quantile of historical sample

� Practical problem: portfolio is likely to be changing over time

� Backtest comparison assume static portfolio
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Assessing Value-at-Risk

Backtesting of VaR

Overview

Testable dimensions of VaR

Unconditional coverage: is proportion of exceedances in entire sample
consistent with VaR confidence level?

Independence: frequency and timing of exceedances, e.g. absence of
clustering

Magnitude of exceedances: somewhat larger or much larger than VaR?
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Assessing Value-at-Risk

Backtesting of VaR

Overview

Brief review of statistical hypothesis testing

� Formulate statistical hypothesis testable with available data

� Framed as a null hypothesis H0 about a distributional characteristic
of the data

� H0 expressed through a test statistic, so falsifiable based on data
� H0 guides choice of test statistic; data determines its value
� So falsifiable based on data

� H0 guides choice of test statistic; data determines its value

� So falsifiable based on data
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Assessing Value-at-Risk

Backtesting of VaR

Overview

Errors in statistical hypothesis testing

Type I: reject H0 even though H0 true

� Often referred to as “false positive”

� Since rejection often taken as confirmation of a theory
� When framed as “treatment has effect” or “factor has influence”

� Significance level of test: a prespecified, chosen probability of
Type I error, e.g. 0.01

� p-value: probability, if H0 true, of having a test statistic at least as
unfavorable to H0 as that actually obtained

Type II: fail to reject H0 even though H0 false

� “False negative”
� Power of a test: probability of Type II error
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Assessing Value-at-Risk

Backtesting of VaR

Overview

Sample space of a statistical test

� Sample space: all the possible configurations of the data

� Identify in the sample space for a given significance level:

Critical or rejection region within which H0 rejected
Acceptance or non-rejection region within which H0 not rejected
is complement in sample space of critical region

� Sample ∈ critical region leads to test statistic with p-value <

significance level
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Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

Statistical framework for unconditional coverage test

� VaR associated with a confidence level α

� VaR model accurate⇒exceedances occur ≈ every (1− α)−1 periods

� For example, with daily VaR at 95 percent, expect ≈ 1 per month
� →Null hypothesis H0: exceedance frequency or fraction of

exceedances = 1− α

� Backtest is a sequence of comparisons of current VaR estimate with
P&L realized at the VaR forecast horizon

� Under H0, comparisons are Bernoulli trials/random variables:

with probability

{

1− α

α

}

result is

{

1 (VaR exceedance)
0 (VaR not exceeded)

� And independently and identically distributed (i.i.d.)
� In reality, clustered exceedances are routine

� H0 doesn’t state returns are lognormal, just that VaR procedure
accurate for confidence level α
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Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

Test statistic of unconditional coverage test
� Likelihood function of T i.i.d. observations of VaR forecast and
subsequent realized loss:

L(α; x) = (1− α)xαT−x

� x is the number of exceedances out of T
� L(α): probability of x in-sample exceedances if exceedance

probability 1− α

� Maximum likelihood estimator of α is 1− x
T

� Likelihood function then takes on value

L
(

x

T
; x

)

=
(

x

T

)x (

1−
x

T

)T−x

� The test statistic is the log likelihood ratio

2
{

ln
[

L
( x

T
; x
)]

− ln [L(α; x)]
}

= 2

{

ln

[

( x

T

)x (

1−
x

T

)T−x
]

− ln
[

(1− α)xαT−x
]

}
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Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

Distribution of unconditional coverage test statistic

� Test statistic measures distance between data and model prediction

� Log of ratio of what we observe to what H0 leads us to expect

� Follows a χ2 distribution (for large enough T ) if H0 is true

� With one degree of freedom (df), for the one parameter α
� χ

2 test a standard approach to assessing goodness of fit of a
distributional hypothesis

� In this case, exceedances i.i.d. Bernoulli trials with parameter α

� p-value: probability, if H0 true, of a test statistic greater than or
equal to that actually obtained in the sample

� I.e. 1 minus cumulative probability of a χ
2[1] variate with a value

equal to the test statistic

� Independence requirement→non-overlapping observations if risk
horizon > observation frequency
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Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

χ
2[1] distribution
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2 variate with one degree of freedom.

Significance level 0.95 0.99
Critical value 3.8415 6.6349

12/26



Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

Critical value and acceptance range
� Reject H0 only if test statistic >critical value

� Critical value is a quantile of χ2[1], the χ
2 distribution with 1 df

� Quantile is chosen to correspond to significance level of backtest

� →Acceptance range: range of number of exceedances s.t. test
statistic <critical value

� If number of exceedances falls outside acceptance range, reject null
hypothesis

� Too many or too few exceedances→high value of test statistic
� But caveat: χ2 nonetheless a one-tailed test

� Example: 1 year (252 daily observations), VaR confidence level 0.99

No. of exceedances 0 3 10

Test statistic 5.0654 0.0870 12.8331
χ2 cumulative probability 0.9756 0.2320 0.9997
p-value 0.0244 0.7680 0.0003

� Zero exceedances results in rejection of H0 at a significance level of
0.95, but not 0.99
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Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

Significance and confidence levels in the test

� Confidence level of backtest is distinct from confidence level of VaR

� Confidence level of VaR enters into test statistic (together with
number of observations, number of exceedances)

� Significance level of backtest determines χ2 quantile to compare
(together with number of degrees of freedom)

� Acceptance range depends on significance level of backtest

� Acceptance range is wider at a higher significance level
� Greater departure from expected exceedance count required to reject

null that VaR accurate
� Any realization outside acceptance range has p-value below

significance level of backtest
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Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

Test statistic and acceptance range
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for integer values of

exceedances x from 0 to 7. The acceptance range at a 95 percent confidence level is
x ∈ [1, 6].
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Assessing Value-at-Risk

Backtesting of VaR

Examples of backtesting

Setting up the examples

� Unconditional coverage test of daily VaR at 99 percent confidence
level

� Using 5 years of data 30Sep2014 to 30Sep2019
� Use parametric VaR with EWMA volatility estimate

� Assume constant position size each day, backtest in return terms

� Backtest two single-position portfolios:

� Long position in S&P 500
� Short position in AUD against USD

� AUD-USD exchange rate expressed as USD price of A$1
� Short loss if exchange rate rises
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Assessing Value-at-Risk

Backtesting of VaR

Examples of backtesting

S&P 500 and AUD-USD returns and excessions
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Points denote daily returns, solid plot the 98 percent confidence level,
expressed as a return and measured using a EWMA volatility estimate
with a decay factor of λ = 0.94. Orange x’s denote excessions of the
VaR. Left: long position in the S&P 500 index. Right: short position in
AUD against USD.
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Assessing Value-at-Risk

Backtesting of VaR

Examples of backtesting

Results for the examples

� Reject H0 for long position in S&P 500 at 0.95 and 0.99 significance
levels

� Reject H0 for short position in AUD-USD at neither 0.95 nor 0.99
significance levels

Long S&P 500 Short AUD-USD

no. obs. 1258 1304
acceptance range (0.99 significance level) 7–20 7–20
no. excessions 28 17
% excessions 2.23 1.30
value of test statistic 14.157 1.109
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Assessing Value-at-Risk

Backtesting of VaR

Limitations of the unconditional coverage test

Limitations of the unconditional coverage test

� Weak test: hard to reject H0 unless number of observations T very
large

� Disregards size of exceedances (→expected shortfall)

� Disregards clustering of exceedances (→alternative tests, return
models)
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Critiques of VaR

Backtesting of VaR

Critiques of VaR
Overview
Variability of VaR estimates
The coherence critique of VaR
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Assessing Value-at-Risk

Critiques of VaR

Overview

Limitations of VaR
� Accuracy:

� Inadequate treatment of frequency and size of tail risk⇒generally
poor performance during crises

� But even when no recent financial crisis, low power, i.e. hard to
reject null

� VaR doesn’t tell risk manager how large loss might be if VaR
exceeded

� In VaR limit system, may incentivize traders to take more risk
� Trades may increase return, as well as probability of tail losses much

larger than VaR, while increasing VaR much less

� Can be addressed through use of (→)expected shortfall

� Even if the distribution model were right: nonlinear risks, options

� The devil in the details: subtle and not-so-subtle differences in how
VaR is computed→large differences in results

� VaR is not coherent because it is not subadditive: a portfolio may
have a VaR larger than the sum of the individual positions’ VaR

� Procyclicality: widespread use of similar VaR models in setting
trading limits can amplify price fluctuations
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Assessing Value-at-Risk

Critiques of VaR

Variability of VaR estimates

Getting whatever answer you want from VaR

� S&P 500 index Dec. 1993 to Aug. 2013

� Compute 10-day (2-week) VaR four different ways
1. Parametric: assume log returns normally distributed

1.a Using 10-day volatility, computed via exponentially weighted moving
average (EWMA) using non-overlapping observations

1.b Using 1-day volatility times
√
10

2. Historical simulation using non-overlapping observations

2.a Using 2 years of data
2.b Using 5 years of data

� Express results as a return (easy to turn into a dollar amount)

� Results: large differences among approaches

Technique 12Mar2003 26Nov2008

Parametric: 10-day volatility 9.90 14.43

Parametric: 1-day volatility ×
√
10 9.03 28.75

Historical simulation: 2 years of data 8.15 24.60
Historical simulation: 5 years of data 9.66 20.15
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Assessing Value-at-Risk

Critiques of VaR

Variability of VaR estimates

Backtesting the four models
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Backtesting VaR, 99 percent confidence level. With T = 513 and α = 0.99, the
acceptance range is [2, 10]. Points denote returns, blue plot the VaR, expressed as a
return, red x’s denote excessions.
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Assessing Value-at-Risk

Critiques of VaR

Variability of VaR estimates

Variability and model risk

� Model risk: Risk of losses due to errors in models and how applied

� Choice of VaR model can lead to over- or underestimate of risk ex

post

� →Subject to manipulation

� Choice of computational technique, historical lookback period
� Distributional hypothesis, pricing models in siumlations
� Choice of risk factors, e.g. mapping resi subprime to AAA corporate
� Mapping position and hedge to same risk factor: voil‘a, no basis risk
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Assessing Value-at-Risk

Critiques of VaR

The coherence critique of VaR

Coherence of risk measures

� Coherence is a set of standards for risk measures to ensure they do
not lead to perverse or counterintuitive rankings of strategies

� Defined mathematically, but implement these intuitions:

Monotonicity: if one portfolio’s return is always greater than that
of another, its measured risk must be smaller

Homogeneity of degree one: doubling every position in a
portfolio should exactly double its measured risk

Subadditivity: the risk of a portfolio should be no greater than the
sum of the risks of its constituents

Translation invariance: adding a riskless asset to a portfolio should
reduce its measured risk by that same amount

� VaR doesn’t satisfy the subadditivity condition
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Assessing Value-at-Risk

Critiques of VaR

The coherence critique of VaR

Examples of failure of subadditivity of VaR

� Examples are easy to generate: require

� Positions susceptible to large loss, but with low probability, i.e. below
1− α, with α the VaR confidence level

� →Each position has zero or negative VaR
� Positions are independent, or have low correlation, or low probability

of joint event of loss
� Loss probabilities and correlations are such that probability of loss on

at least one position exceeds α

� Examples of positive-VaR portfolios at the 99 percent confidence
level consisting of zero- or negative-VaR positions

� Market-risk VaR: two option positions, short a far out-of-the-money
(OTM) call and OTM put, each with probability of exercise just less
than 1 percent

� Credit-risk VaR: two loans, each with a default probability just less
than 1 percent and low default correlation
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