Lecture notes on risk management, public policy, and the financial system Assessing Value-at-Risk

Allan M. Malz

Columbia University

Critiques of VaR

Overview Unconditional coverage test procedure Examples of backtesting Limitations of the unconditional coverage test

Critiques of VaR

Assessing Value-at-Risk

Backtesting of VaR

Overview

Challenges in validating VaR

- How do we measure "poor performance" of VaR? \rightarrow model risk
- VaR backtesting: type of model validation
- VaR not a point forecast, but statement about distribution of future outcomes
- VaR exceedance, exception or excession: event the portfolio loss exceeds the VaR
 - Loss over the VaR horizon is compared with VaR computed just prior
 - E.g. for daily VaR, compare VaR reported at close of trading with loss over subsequent trading day
- For single position, exceedance can be defined in terms of return: for each of T observations,
 - Parametric: compare realized return with estimated volatility
 - Historical simulation: compare realized log or arithmetic return with quantile of historical sample
- Practical problem: portfolio is likely to be changing over time
 - Backtest comparison assume static portfolio

Overview

Testable dimensions of VaR

Unconditional coverage: is proportion of exceedances in entire sample consistent with VaR confidence level?

Independence: frequency and timing of exceedances, e.g. absence of clustering

Magnitude of exceedances: somewhat larger or much larger than VaR?

-Overview

Brief review of statistical hypothesis testing

- Formulate statistical hypothesis testable with available data
 - Framed as a null hypothesis \mathfrak{H}_0 about a distributional characteristic of the data
 - \mathfrak{H}_0 expressed through a test statistic, so falsifiable based on data
 - \mathfrak{H}_0 guides choice of test statistic; data determines its value
 - So falsifiable based on data
- \mathfrak{H}_0 guides choice of test statistic; data determines its value
 - So falsifiable based on data

Errors in statistical hypothesis testing

Type I: reject \mathfrak{H}_0 even though \mathfrak{H}_0 true

- Often referred to as "false positive"
 - Since rejection often taken as confirmation of a theory
 - When framed as "treatment has effect" or "factor has influence"
- **Significance level** of test: a prespecified, chosen probability of Type I error, e.g. 0.01
 - *p*-value: probability, if \mathfrak{H}_0 true, of having a test statistic at least as unfavorable to \mathfrak{H}_0 as that actually obtained
- **Type II:** fail to reject \mathfrak{H}_0 even though \mathfrak{H}_0 false
 - "False negative"
 - Power of a test: probability of Type II error

Overview

Sample space of a statistical test

- Sample space: all the possible configurations of the data
- Identify in the sample space for a given significance level:
 Critical or rejection region within which *𝔅*₀ rejected
 Acceptance or non-rejection region within which *𝔅*₀ not rejected is complement in sample space of critical region
- Sample ∈ critical region leads to test statistic with *p*-value < significance level

Statistical framework for unconditional coverage test

- VaR associated with a confidence level $\boldsymbol{\alpha}$
- VaR model accurate \Rightarrow exceedances occur \approx every $(1 \alpha)^{-1}$ periods
 - For example, with daily VaR at 95 percent, expect ≈ 1 per month
 - \rightarrow Null hypothesis \mathfrak{H}_0 : exceedance frequency or fraction of exceedances = 1α
- Backtest is a sequence of comparisons of *current* VaR estimate with P&L realized *at the VaR forecast horizon*
- Under \mathfrak{H}_0 , comparisons are Bernoulli trials/random variables:

with probability
$$\left\{ \begin{array}{c} 1-\alpha\\ \alpha \end{array} \right\}$$
 result is $\left\{ \begin{array}{c} 1 & (VaR \text{ exceedance})\\ 0 & (VaR \text{ not exceeded}) \end{array} \right\}$

- And independently and identically distributed (i.i.d.)
- In reality, *clustered* exceedances are routine
- \mathfrak{H}_0 doesn't state returns are lognormal, just that VaR procedure accurate for confidence level α

Assessing Value-at-Risk

Unconditional coverage test procedure

Test statistic of unconditional coverage test

• Likelihood function of T i.i.d. observations of VaR forecast and subsequent realized loss:

$$L(\alpha; x) = (1 - \alpha)^{x} \alpha^{T - x}$$

- x is the number of exceedances out of T
- $L(\alpha)$: probability of x in-sample exceedances if exceedance probability 1α
- Maximum likelihood estimator of α is $1 \frac{x}{T}$
 - Likelihood function then takes on value

$$L\left(\frac{x}{T};x\right) = \left(\frac{x}{T}\right)^{x} \left(1 - \frac{x}{T}\right)^{T-x}$$

• The test statistic is the log likelihood ratio

$$2\left\{\ln\left[L\left(\frac{x}{T};x\right)\right] - \ln\left[L(\alpha;x)\right]\right\}$$
$$= 2\left\{\ln\left[\left(\frac{x}{T}\right)^{x}\left(1 - \frac{x}{T}\right)^{T-x}\right] - \ln\left[(1 - \alpha)^{x}\alpha^{T-x}\right]\right\}$$

Distribution of unconditional coverage test statistic

- Test statistic measures distance between data and model prediction
 - Log of ratio of what we observe to what \mathfrak{H}_0 leads us to expect
- Follows a χ^2 distribution (for large enough T) if \mathfrak{H}_0 is true
 - With one degree of freedom (df), for the one parameter α
 - χ^2 test a standard approach to assessing goodness of fit of a distributional hypothesis
 - In this case, exceedances i.i.d. Bernoulli trials with parameter α
- *p*-value: probability, if \mathfrak{H}_0 true, of a test statistic greater than or equal to that actually obtained in the sample
 - I.e. 1 minus cumulative probability of a $\chi^2[1]$ variate with a value equal to the test statistic
- Independence requirement→non-overlapping observations if risk horizon > observation frequency

Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

$\chi^2[1]$ distribution

Cumulative distribution function of a χ^2 variate with one degree of freedom.

Significance level 0.95 0.99 Critical value 3.8415 6.6349

Critical value and acceptance range

- Reject \mathfrak{H}_0 only if test statistic >critical value
 - Critical value is a quantile of $\chi^2[1],$ the χ^2 distribution with 1 df
 - Quantile is chosen to correspond to significance level of backtest
- →Acceptance range: range of number of exceedances s.t. test statistic <critical value
 - If number of exceedances falls *outside* acceptance range, *reject* null hypothesis
 - Too many *or* too few exceedances→high value of test statistic
 - But caveat: χ^2 nonetheless a **one-tailed test**

• Example: 1 year (252 daily observations), VaR confidence level 0.99

No. of exceedances	0	3	10
Test statistic	5.0654	0.0870	12.8331
χ^2 cumulative probability	0.9756	0.2320	0.9997
<i>p</i> -value	0.0244	0.7680	0.0003

• Zero exceedances results in rejection of \mathfrak{H}_0 at a significance level of 0.95, but not 0.99

Significance and confidence levels in the test

- Confidence level of backtest is distinct from confidence level of VaR
 - *Confidence* level of *VaR* enters into test statistic (together with number of observations, number of exceedances)
 - Significance level of backtest determines χ^2 quantile to compare (together with number of degrees of freedom)
- Acceptance range depends on significance level of backtest
 - Acceptance range is wider at a higher significance level
 - Greater departure from expected exceedance count required to reject null that VaR accurate
 - Any realization outside acceptance range has *p*-value below significance level of backtest

Assessing Value-at-Risk

Unconditional coverage test procedure

Test statistic and acceptance range

Points represent values for 1 years of daily VaR estimates; T = 252 and $\alpha = 0.99$ of test statistic $2\left\{ \ln\left[\left(\frac{x}{T}\right)^{x}\left(1-\frac{x}{T}\right)^{T-x}\right] - \ln\left[(1-\alpha)^{x}\alpha^{T-x}\right] \right\}$ for integer values of exceedances x from 0 to 7. The acceptance range at a 95 percent confidence level is $x \in [1, 6]$.

Examples of backtesting

Setting up the examples

- Unconditional coverage test of daily VaR at 99 percent confidence level
 - Using 5 years of data 30Sep2014 to 30Sep2019
 - Use parametric VaR with EWMA volatility estimate
- Assume constant position size each day, backtest in return terms
- Backtest two single-position portfolios:
 - Long position in S&P 500
 - Short position in AUD against USD
 - AUD-USD exchange rate expressed as USD price of A\$1
 - Short loss if exchange rate rises

- Examples of backtesting

S&P 500 and AUD-USD returns and excessions

Points denote daily returns, solid plot the 98 percent confidence level, expressed as a return and measured using a EWMA volatility estimate with a decay factor of $\lambda = 0.94$. Orange x's denote excessions of the VaR. Left: long position in the S&P 500 index. Right: short position in AUD against USD.

Examples of backtesting

Results for the examples

- Reject \mathfrak{H}_0 for long position in S&P 500 at 0.95 and 0.99 significance levels
- Reject \mathfrak{H}_0 for short position in AUD-USD at neither 0.95 nor 0.99 significance levels

	Long S&P 500	Short AUD-USD
no. obs.	1258	1304
acceptance range (0.99 significance level)	7–20	7–20
no. excessions	28	17
% excessions	2.23	1.30
value of test statistic	14.157	1.109

Limitations of the unconditional coverage test

Limitations of the unconditional coverage test

- Weak test: hard to reject \mathfrak{H}_0 unless number of observations $\mathcal T$ very large
- Disregards *size* of exceedances (→expected shortfall)
- Disregards *clustering* of exceedances (→alternative tests, return models)

Critiques of VaR

Overview Variability of VaR estimates The coherence critique of VaR Critiques of VaR

Limitations of VaR

- Accuracy:
 - Inadequate treatment of frequency and size of tail risk⇒generally poor performance during crises
 - But even when no recent financial crisis, low power, i.e. hard to reject null
- VaR doesn't tell risk manager how large loss might be if VaR exceeded
 - In VaR limit system, may incentivize traders to take more risk
 - Trades may increase return, as well as probability of tail losses much larger than VaR, while increasing VaR much less
 - Can be addressed through use of $(\rightarrow) expected shortfall$
- Even if the distribution model were right: nonlinear risks, options
- The devil in the details: subtle and not-so-subtle differences in how VaR is computed→large differences in results
- VaR is not **coherent** because it is not **subadditive**: a portfolio may have a VaR larger than the sum of the individual positions' VaR
- **Procyclicality**: widespread use of similar VaR models in setting trading limits can amplify price fluctuations

Variability of VaR estimates

Getting whatever answer you want from VaR

- S&P 500 index Dec. 1993 to Aug. 2013
- Compute 10-day (2-week) VaR four different ways
 - 1. Parametric: assume log returns normally distributed
 - 1.a Using 10-day volatility, computed via exponentially weighted moving average (EWMA) using non-overlapping observations
 - **1.b** Using 1-day volatility times $\sqrt{10}$
 - 2. Historical simulation using non-overlapping observations
 - 2.a Using 2 years of data
 - 2.b Using 5 years of data
- Express results as a return (easy to turn into a dollar amount)
- Results: large differences among approaches

Technique	12Mar2003	26Nov2008
Parametric: 10-day volatility	9.90	14.43
Parametric: 1-day volatility $ imes \sqrt{10}$	9.03	28.75
Historical simulation: 2 years of data	8.15	24.60
Historical simulation: 5 years of data	9.66	20.15

Critiques of VaR

Variability of VaR estimates

Backtesting the four models

Backtesting VaR, 99 percent confidence level. With T = 513 and $\alpha = 0.99$, the acceptance range is [2,10]. Points denote returns, blue plot the VaR, expressed as a return, red x's denote excessions.

Variability of VaR estimates

Variability and model risk

- Model risk: Risk of losses due to errors in models and how applied
- Choice of VaR model can lead to over- or underestimate of risk *ex post*
- \rightarrow Subject to manipulation
 - Choice of computational technique, historical lookback period
 - Distributional hypothesis, pricing models in siumlations
 - Choice of risk factors, e.g. mapping resi subprime to AAA corporate
 - Mapping position and hedge to same risk factor: voil'a, no basis risk

Coherence of risk measures

- **Coherence** is a set of standards for risk measures to ensure they do not lead to perverse or counterintuitive rankings of strategies
- Defined mathematically, but implement these intuitions:
 Monotonicity: if one portfolio's return is always greater than that of another, its measured risk must be smaller
 Homogeneity of degree one: doubling every position in a portfolio should exactly double its measured risk
 Subadditivity: the risk of a portfolio should be no greater than the sum of the risks of its constituents
 Translation invariance: adding a riskless asset to a portfolio should reduce its measured risk by that same amount
- VaR doesn't satisfy the subadditivity condition

Critiques of VaR

└─ The coherence critique of VaR

Examples of failure of subadditivity of VaR

- Examples are easy to generate: require
 - Positions susceptible to large loss, but with low probability, i.e. below 1α , with α the VaR confidence level
 - \rightarrow Each position has zero or negative VaR
 - Positions are independent, or have low correlation, or low probability of joint event of loss
 - Loss probabilities and correlations are such that probability of loss on at least one position exceeds α
- **Examples** of positive-VaR portfolios at the 99 percent confidence level consisting of zero- or negative-VaR positions
 - Market-risk VaR: two option positions, short a far out-of-the-money (OTM) call and OTM put, each with probability of exercise just less than 1 percent
 - Credit-risk VaR: two loans, each with a default probability just less than 1 percent and low default correlation